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INTRODUCTION

The moisture of the building materials is still 
a current problem. It is immediately connected 
with the existence of buildings. Moreover, it has 
a significant impact to the environment. These 
are the reasons, why elaboration of methods for 
detecting moisture in partitions, growth of new 

techniques, improvement and adaptation of the 
existing ones perform very significant role. The 
moisture measurement is carried out using many 
detection techniques starting from direct gravi-
metric methods described in the following article 
[1] through electric methods as resistance [2]  or 
capacitance method described in [3] to micro-
wave methods mentioned in following paper [4] 
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vol.% and 1.25 vol.% than the ones in the regression model, respectively, which means that the models obtained 
using ANCOVA more accurately describe the examined relationship.
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where a very popular device by MOIST produc-
er was presented. One of the most recognizable 
methods is reflectometric detection technique 
TDR (Time Domain Reflectometry). This is a 
indirect-type method. It means that the measured 
parameter is not moisture, but other factor related 
to it. Testing the moisture of various materials and 
building partitions is achievable using the TDR 
equipment consisting of multimeter, sensors, suit-
able software and calibration equations which is 
in detail described in articles by Soncela et al. 
and [5] Paśnikowska et al.[6]. The most popular 
devices applied in laboratory and in-situ research 
are produced by the following producers: Camp-
bell Scientific [7], Tektronix [8], E-Test [9].

The TDR measurement method relies on set-
ting the apparent permittivity ε [-] value of the 
medium using the measurement of the time of 
the electromagnetic pulse propagation along the 
elements of the measuring sensors. Apparent per-
mittivity, denotes a measure of the behavior of 
matter particles if an external alternating electric 
field is used [10]. The dependence between the 
dielectric parameters which are displayed by wet 
porous media and the moisture of the medium 
is generally introduced by the physical and em-
pirical models which were described by Černý 
[11] and He [12]. The more detailed information 
about the TDR technique is exhibited in papers 
[13] and [14] for soils and [15] for porous me-
dia. It ought to be emphasized here that the TDR 
method is relatively low sensitive on medium 
salinity which constitutes a significant problem 
in moisture behavior of porous materials [16]. 
Measurements that utilize this technique are in-
vasive and require the installation of sensors into 
the tested material, which is difficult in the case 
of hard building materials and often requires 
boreholes what was presented in Barnat-Hunek 
et al. [17] and Freitas et al. [18]. The research 
results presented in the paper were obtained from 
surface sensors, in which the electromagnetic 
pulse propagates differently, which requires an 
individual method of its analysis and more ad-
vanced calibration methods that are described 
by coauthors of this article – for surface sensors 
[19] and for flat sensor of simplified construction 
[20]. The most common cited empirical model 
for TDR sensors calibration applied in the practi-
cal evaluation of medium moisture is the Topp 
model [10] of the following form:

 
𝜃𝜃 = −0.053 + 0.0292𝜀𝜀 − 
0.00055𝜀𝜀2 + 0.0000043𝜀𝜀3 

(1) 
 
 
 
 

 (1)

where: Ө – volumetric water content in the exam-
ined porous medium [cm3/cm3], ε – appar-
ent permittivity of the medium measured 
using the TDR method [-].

This model is universal, but according to 
many authors, measurements using it are subject 
to large measurement errors [11]. In the paper 
[21] Schapp et al. showed that the range 0.05-
0.15 cm3/cm3 describes the possible uncertainty 
of measurement. The reason of this fact can be 
the differences of solid phase structure of the ana-
lyzed building material. On the other hand, in the 
paper Černý obtained that 0.0468 cm3/cm3 is the 
standard uncertainty of moisture evaluation de-
termined by the Topp’s model. Therefore, models 
are often used that take into account other param-
eters, e.g. bulk density, which requires additional 
research (e.g. Malicki formula) [22]. Empirical 
models developed individually for each material 
or sensor have great application potential. They 
allow for high measurement accuracy, on the 
other hand, they require time-consuming calibra-
tion tests. Most often they take the form of lin-
ear [23] or polynomial equations as presented by 
Quinones et al. [24], Udawatta et al. [25], Ren et. 
al [26] and Ju et al. [27]. 

The aim of the article is to develop the pos-
sibility of a new method of calibrating non-in-
vasive reflectometric sensors that will allow to 
combine the apparent permittivity value read by 
the TDR non-invasive sensor and building ma-
terial moisture. For this purpose, the ANCOVA 
analysis method will be used, considered to be an 
extension of one of the most universal methods 
of mathematical description - the analysis of vari-
ance method (ANOVA). ANOVA was introduced 
by the English mathematician Ronald Fisher. This 
method makes it possible to compare more than 
two groups with each other and to investigate the 
influence of several factors on the examined fea-
ture. The purpose of analysis of variance is to test 
the significance of differences between means. 

ANCOVA adjusts for the effect of a covari-
ate to test whether there is a significant difference 
between the means of two or more groups. In 
other words, analysis of covariance is a statisti-
cal method of examining the responses of differ-
ent groups to a dependent variable which adjusts 
for the influence of a variable that is not being 
tested but is nevertheless related to the depen-
dent variable and therefore may influence the 
results of the scientific research. The appropriate 
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techniques for determining variable importance  
using ANCOVA was presented in [28] Addition-
ally, another examples of applying the analysis 
of covariance were showed in [29]. Analysis of 
covariance is considered to be a technique that 
somehow combines analysis of variance and 
analysis of regression, and from this point of 
view it can also be treated as one of the special 
cases of an even more general approach to model-
ing the interdependence of variables, which is the 
so-called general linear model. The best practices 
for applying covariance analysis methods was in-
troduced in [30]. Moreover, the examples where 
using ANCOVA is inappropriate or doubtful were 
widely considered in [31]. The original achieve-
ment of the work is the application of the AN-
COVA method, which has not been used in any 
work known to the authors, so its applying can be 
considered proprietary. The using of analysis of 
covariance allowed to obtain better measurement 
characteristics than the sensors used traditional 
calibration methods used by other authors, which 
is described in detail in the last paragraph of the 
chapter Results and discussion.

MATERIALS AND METHODS

Measuring setup

Measuring setup applied for testing consisted 
of the following elements:
 • TDR multimeter (ETest, Lublin, Poland) and 

PC for device control and data acquisition 
(Figure 1); 

 • a set of TDR surface sensor prototypes 
(A,B,C,D) (own manufacture);

 • electric oven VO-500 (Memmert, Germany);
 • laboratory scales WPT 6C/1 (Radwag, 

Poland).
The surface TDR sensors were designed 

and manufactured in Lublin University of Tech-
nology. They are made of plastic called POM 

(polyoxymethylene) having the apparent permit-
tivity value equal 3.8 [-], cf. [32]. Each sensor 
consist of the dielectric material (POM), meas-
uring rods made of metal and a printed circuit 
to connect the measuring element with the TDR 
multimeter via a coaxial cable (Figure 2). The 
sensors differ from each other in such elements as 
width, shape of measuring element and thickness. 
The basic technical details of sensors used in re-
search are summarized in Table 1.

Building materials tested using 
the TDR technique

The research concerns the following build-
ing materials: cellular concrete, clinker brick, 
ceramic brick, silicate brick and aerated lime sili-
cate [33]. The samples of building materials were 
prepared in the form the tiles. The dimensions of 
the samples for sensors A and B were 220 × 120 
× 10 mm. For the wider sensors of type C and 
D, the samples with dimensions of 230 × 130 × 
10 mm were used. The specification of analyzed 
materials is presented in Table 2. All of tests were 
carried out at a constant temperature of 20 ± 1°C 
and a relative air humidity of 50 ±5%. 

The samples were dried in an oven to constant 
weight. In order to provide sample homogeneity, 
the thin plates were combined into larger sets to 
achieve total thickness 50 mm. During measure-
ment the surface TDR probe was placed on the 
sample (Figure 3) and a reading of the apparent 
permittivity was made with a TDR multimeter. In 
the next experiment steps, the samples were grad-
ually saturated with a specific amount of distilled 
water using an atomizer, and at the end of the ex-
periment, they were immersed in cuvettes until 
they were completely saturated. All measurements 
using TDR  sensors were iterated 5 times for given 
material moisture level. With the described experi-
ment the relationships between apparent permittiv-
ity and volumetric water content were determined, 

Fig. 1. Block diagram of the measurement setup
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which were later mathematically described using 
both standard linear regression models and math-
ematical models established by ANCOVA.

Description of ANCOVA method

Analysis of covariance is a combination of 
analysis of variance and analysis of regression, it 
requires the following assumptions [35]
 • linearity – there is a linear relationship be-

tween the independent variable and the depen-
dent variable;

 • homoscedasticity – the variance of the residu-
als is the same for all observations;

 • the random component (residues) are uncor-
related and normally distributed;

 • the number of cases is greater than or equal 
to the number of parameters derived from the 
regression analysis;

 • the dependent variable should be measured on 
a quantitative scale;

 • samples were taken randomly, independently 
for each of the analyzed groups.

In assumption ANCOVA method is used when 
the following conditions are satisfied: normal dis-
tribution of the studied dependent variables with-
in the compared groups, equality of variances 
between the groups and assumptions regarding 
the random component of the linear model [36]. 
Because the analysis of covariance model has a 
regression component, the residuals in the model 
will take different values for measurements with-
in each comparison group and between groups. 
The best test of the equality of variance assump-
tion is to plot the residuals against adjusted group 
means. Simultaneously, due to the fact that the 
analysis of covariance model is a linear model 
and contains both qualitative and quantitative 
independent variables, there is an additional as-
sumption that the regression coefficients within 
the compared groups are equal[37] .

Moreover, the two most important purposes 
for which ANCOVA is used are [36]:
 • increasing the precision of comparisons be-

tween the studied groups by taking into ac-
count the variability that is caused by the ac-
companying variables;

 • “adjustment” of comparisons between the 
study groups in the case that the average level 
of the covariate in the comparison groups also 
differs.

Currently, the analysis of covariance is a 
method commonly used in both experimental and 
observational studies, examples of such experi-
ments can be found in [38].

Table 1. Basic technical data of TDR sensors
Sensor symbol A B C D

Number of rods 2 2 2 3

Sensor length [mm] 200 200 200 200

Sensor width [mm] 50 50 100 100

Shape of measuring element Angle bar (12×12 mm) Flat bar (2×10 mm) Flat bar (2×10 mm) Flat bar (2×10 mm)

Fig. 2. Schematic view of a sensor

Table 2. The parameters of analyzed materials [34]
Material Maximum absorptivity

Cellular concrete 0.42

Clinker brick 0.16

Ceramic brick 0.36

Silicate brick 0.27

Aerated lime silicate 0.92
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RESULTS AND DISCUSSION

The result of the research is a set of data be-
tween material moisture evaluated gravimetri-
cally and apparent permittivity read by the TDR 
equipment. All readouts are presented in Figure 4.

Most of the statistical analysis contained in 
this paper were carried out by using RStudio [39]. 
The research refers to the values of readouts of 
the relative permittivity by the TDR sensors of 
several types of the building materials. The first 
statistical method used to analyze the achieved 

data is linear regression analysis. It was applied 
to describe dependence between material mois-
ture and apparent permittivity read by each TDR 
sensor. For this case four linear regression mod-
els describing the relationships between relative 
permittivity (ε) and moisture (θ) were obtained, 
presented in Table 3. 

Table 4 contains the summary of character-
istics for each model. The determination coeffi-
cients R2 for all of the models vary from 0.9566 
to 0.9811. The RSE value in the obtained models 
varies from 3.17 vol.% to 4.81 vol.% and RMSE 

Fig. 3. Photograph of the sensor B and tested sample during measurement

Fig. 4. All readouts achieved within the experiment
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Table 3. The regression models for given data
Sensor Regression model

A θ = -0.11 + 0.055ε

B θ = -0.133 + 0.052ε

C θ = -0.106 + 0.045ε

D θ = -0.121 + 0.049ε

Table 4. Characteristics of dependencies of moisture and relative permittivity by regression analysis
Sensor R2 F RSE RMSE

A 0.9811 17534 0.0317 0.03

B 0.9679 12468 0.0389 0.04

C 0.9649 9301 0.0432 0.04

D 0.9566 7444 0.0481 0.05

Fig. 5. The scatter plots describing correlations between expected 
moisture and moisture examined gravimetrically

of RSE and RMSE confirm that the models are 
well matched. Additionally, each model has all 
statistically significant coefficients, because in all 
cases p-value < 2.2 ∙ 10-16.

The results of the correlation analysis are 
graphically presented in a so-called scatter plot, 
cf. Figure 7. The calculated correlation coefficient 
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Fig. 6. The regression lines describing relationships between relative permittivity and moisture for given data

varies from 3 vol.% to 5 vol.%. Moreover, each 
model has all statistically significant coefficients, 
because in all cases p-value < 2.2 ∙ 10-16 . The re-
sults of the correlation analysis are graphically 
presented in a so-called scatter plot, cf. Figure 5. 
The calculated correlation coefficients for sensors 
A-D vary from 0.97 to 0.99 and p-value < 2.2 ∙ 10-

16 . Hence, in each case there is a statistically sig-
nificant correlation between the expected mois-
ture and the moisture of the examined material.

The obtained regression models were im-
proved by applying analysis of covariance (AN-
COVA). The universal models obtained using the 
analysis of covariance method for each of four 
types of sensors were presented. In addition, it 
was verified that all assumptions of the analysis 
of covariance were satisfied. The relationships 
between relative permittivity (ε) and moisture (Ө) 
in considered models were presented in Figure 6. 
Each color of the regression line corresponds to 
a different level of the grouping factor, which is 
the maximal moisture content of the tested mate-
rial. In the considered case, the qualitative vari-
able (maximal moisture) assumes from four to 

five levels, depending on the tested building ma-
terial, cf. Table 2. Then this variable is encoded 
as follows: one of these levels is specified as ref-
erence (in R, by default, this is the first level in 
alphabetical order), and for each remaining level 
a characteristic variable I is created, also called 
the null variable, and these variables are placed 
in the model. The indicator I, also called the char-
acteristic function of a set, is a function that takes 
the value 1 on a fixed set and 0 outside of it. In 
analysis the dependent variable is the moisture of 
building material and the explanatory variable is 
the relative permittivity. The models obtained for 
data from measurements made by particular sen-
sors were included in Table 5.

The summary of characteristics for each mod-
el was presented in Table 6. Namely, the deter-
mination coefficients R2 for all of the models are 
similar and are greater than 0.98. It means that all 
these models fit the data very well, i.e. precisely 
describe the behavior of the examined dependent 
variable. The RSE value in the obtained models 
varies from 2.33 vol.% to 3.13 vol.% and RMSE 
varies from 2 vol.% to 3 vol.%. The small values 
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for all sensors is greater than 0.99, where p-value 
< 2.2 ∙ 10-16. This means that in each case there 
is a statistically significant correlation between 
the expected moisture content and the moisture 
content of the tested material. This is a very 
strong relationship (because it is close to 1) and 

the correlation is positive. In each case the slope 
of the line is approximately equal to 45 degrees 
and the line starts in the origin. All of this con-
firms that the models describe well the relation-
ship between permeability and moisture content 
of building materials. Based on the characteristics 

Table 5. The models for given data obtained by ANCOVA
Table 5. The models for given data obtained by ANCOVA 
 

Sensor Model 

A 𝜃𝜃 = −0.181 − 0.004𝐼𝐼[𝜃𝜃=0.36] + 0.091𝐼𝐼[𝜃𝜃=0.42] + 0.082𝐼𝐼[𝜃𝜃=0.92] + 𝜀𝜀(0.074 − 0.003𝐼𝐼[𝜃𝜃=0.36] − 0.025𝐼𝐼[𝜃𝜃=0.42] − 0.02𝐼𝐼[𝜃𝜃=0.92]) 

B 
𝜃𝜃 = −0.238 + 0.071𝐼𝐼[𝜃𝜃=0.27] + 0.035𝐼𝐼[𝜃𝜃=0.36] + 0.126𝐼𝐼[𝜃𝜃=0.42] + 0.115𝐼𝐼[𝜃𝜃=0.92] + 

𝜀𝜀(0.077 − 0.017𝐼𝐼[𝜃𝜃=0.27] − 0.008𝐼𝐼[𝜃𝜃=0.36] − 0.034𝐼𝐼[𝜃𝜃=0.42] − 0.025𝐼𝐼[𝜃𝜃=0.92]) 

C 
𝜃𝜃 = −0.237 + 0.052𝐼𝐼[𝜃𝜃=0.36] + 0.155𝐼𝐼[𝜃𝜃=0.42] + 0.138𝐼𝐼[𝜃𝜃=0.92] + 

𝜀𝜀(0.076 − 0.013𝐼𝐼[𝜃𝜃=0.36] − 0.038𝐼𝐼[𝜃𝜃=0.42] − 0.031𝐼𝐼[𝜃𝜃=0.92]) 

D 
𝜃𝜃 = −0.232 + 0.094𝐼𝐼[𝜃𝜃=0.36] + 0.143𝐼𝐼[𝜃𝜃=0.42] + 0.108𝐼𝐼[𝜃𝜃=0.92] + 

𝜀𝜀(0.074 − 0.016𝐼𝐼[𝜃𝜃=0.36] − 0.035𝐼𝐼[𝜃𝜃=0.42] − 0.024𝐼𝐼[𝜃𝜃=0.92]) 

 

 

Fig. 7. The scatter plots describing correlations between expected moisture 
by ANCOVA and moisture examined gravimetrically
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contained in Table 4 and Table 6, the determina-
tion coefficients R2 for all of the models obtained 
by ANCOVA method  are greater than for lin-
ear regression models. It means that all models 
achieved by ANCOVA fit the data better than 
regression models, i.e. more precisely describe 
the behavior of the examined dependent variable. 
Moreover, the smaller values of RSE and RMSE 
for ANCOVA compared to the ones in regression 
method also confirm that the all models deter-
mined by analysis of covariance method are bet-
ter. Finally, it can be concluded that the models 
obtained using the analysis of covariance better 
describe the relationship between moisture and 
relative permittivity than linear regression mod-
els. Using ANCOVA, the quality of measure-
ments can be improved. 

Moreover, the use of the ANCOVA method 
allowed to obtain better measurement character-
istics than the sensors used by other authors using 
traditional calibration methods [12]. In 1990 in the 
paper  [40] Roth et al. proposed the model which 
RMSE varies from 0.8 vol.%  to 3.7 vol.%  de-
pending on the type of examined material. On the 
other hand, the model given by Malicki in [22] was 
characterized by the RMSE equals 3 vol.%. The 
values of the RMSE obtained in this paper varies 
from 2 vol.% to 3 vol.% and are slightly smaller 
than presented in the cited literature. However, it 
should be noted that obtained formulas are uni-
versal and this is the reason of a little bit smaller 
quality of data fitting. Suchorab et al. in the work 
[20] obtained the RSE values between 2.9 vol.% 
and 3.8 vol.%. In this paper the RSE values varies 
from 2.33 vol.% to 3.13 vol.%. Smaller RSE val-
ues mean that the model obtained using the AN-
COVA method is better. The obtained values of 
the determination coefficient are slightly smaller 
than 0.988-0.993 which are the values obtained in 
the paper [20]. Such a small difference does not af-
fect the quality of the model. The similar compari-
son of the effectiveness of two another methods, 
i.e. the K-means method and the genetic algorithm 
(GA), was presented in [41].

CONCLUSIONS

The article emphasizes the advantages of ap-
plication of the ANCOVA method over the linear 
regression techniques to estimate material mois-
ture using the TDR method. With analyzing the 
data achieved with the described experiment the 
following conclusions can be noted. The aver-
age value of the coefficient of determination for 
models obtained using the ANCOVA method 
is 0.9850 and for linear regression models it is 
0.9676, which means that the ANCOVA model 
better describes the phenomenon than the regres-
sion model. The average RSE value in the AN-
COVA models is smaller about 1.24 vol.% than 
the average RSE value in the regression model, 
which means that the models obtained using AN-
COVA more accurately describe the examined 
relationship. The average RMSE value in models 
determined by the ANCOVA method is smaller 
about 1.25 vol.% than the average RSE value in 
the regression model, which also confirms the 
better fit of the ANCOVA-model;

All presented models can be used as calibra-
tion equations for measuring the moisture of po-
rous media using the reflectometric method, but 
the use of the ANCOVA method allows for better 
results. Both  RMSE and RSE values for the cali-
bration formulas obtained using ANCOVA meth-
od are smaller than presented in the literature for 
the standard invasive-type sensors using the clas-
sical empirical calibration formulas.
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